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Heating a salinity gradient from a vertical 
sidewall : linear theory 
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School of Mathematics, University of Bristol, Bristol, BS8 lTW, UK 

(Received 12 May 1988 and in revised form 30 Kovember 1988) 

When a body of fluid with a vertical salinity gradient is heated from a single vertical 
wall, instabilities have sometimes been observed experimentally (Thorpe, Hutt  & 
Soulsby 1969; Chen, Briggs & Wirtz 1971 ; Tsinober & Tanny 1986). We present a 
linear stability analysis for this configuration and show that for strong salinity 
gradients the stability of the fluid to infinitesimal disturbances is governed by a 
single non-dimensional parameter, 

( 1  - r)6g(aAT)6 
VKS 12( - pflz)5 & =  

where g is the acceleration due to gravity, a the coefficient of thermal expansion, p 
the density change due to a unit change in the salinity, AT the change of temperature 
at the wall, gz the vertical salinity gradient, 1 the horizontal lengthscale ( K ~  t ) ; ,  v the 
kinematic viscosity, K~ the diffusivity of heat, K~ the diffusivity of salt and r the 
saltlheat diffusivity ratio. This non-dimensional parameter is related to the Rayleigh 
number, however, it involves two different lengthscales ; the penetration depth of the 
thermal front, 1, and the height by which a heated element of fluid would rise in the 
salinity gradient, gaAT/( -pS,). This analysis is valid when the ratio of the vertical 
lengthscale to the horizontal lengthscale is small. This analysis gives good agreement 
with the published experimental results. 

1. Introduction 
I n  this paper we investigate the stability of a semi-infinite body of fluid with a 

vertical salinity gradient that  has been heated or cooled from a sidewall. In  this 
situation the heat will only penetrate a finite distance into the fluid, and there will 
be a non-uniform lateral temperature gradient. This contrasts with the previous 
theoretical work on the effect of horizontal compositional gradients in double- 
diffusive systems which have assumed linear gradients in the background state, with 
the possible exception of thin boundary layers a t  the wall which do not play a 
significant role in the dynamics. The previous work can be subdivided into two main 
categories. The first of these is concerned with infinite bodies of fluid with linear 
gradients. This work is usually motivated by oceanic applications and often includes 
the effect of vertical rotation. In this category there have been used a variety of 
different models for the diffusion of heat and salt, for example eddy diffusivities 
(Stern 1967; Toole & Georgi 1981), eddy-flux coefficients (McDougall 1985) or 
molecular diffusivities (Kerr & Holyer 1986). The second main category that has 
been studied is concerned with the instabilities observed between two parallel walls. 
These walls may be vertical or inclined. The first theoretical study of the instabilities 
found when a vertical salinity gradient in a vertical slot is subjected to a temperature 
difference between the walls is due to Thorpe, Hutt  & Soulsby (1969) under the 
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approximation that, in some sense, the salinity gradient is strong. This linear 
analysis of a vertical slot has been extended by Hart  (1971) and Thangam, Zebib & 
Chen (1981). The case of instabilities in an inclined slot has been looked at by Chen 
(1975), Chen & Sandford (1977) and Paliwal & Chen (1980a, b ) .  Chen looked a t  the 
evolution of the background flow of an inclined slot with a vertical salinity and 
temperature gradient and no flux conditions at  the walls. The stability of this time 
dependent background flow was then investigated, both numerically and ex- 
perimentally by Chen & Sandford. The case of an inclined slot containing a fluid with 
a vertical salinity gradient and an imposed temperature difference between the two 
walls was examined experimentally and theoretically in Paliwal & Chen (1980 a, b) .  

Thorpe, Hutt  & Soulsby also conducted a series of experiments for a narrow 
vertical slot. In  addition they also presented the results of an experiment with a wide 
slot. When one of the walls was heated, instabilities were observed before the heat 
had penetrated to the far wall of the slot. This configuration, effectively heating a 
semi-infinite fluid from a single sidewall, was studied by Chen, Briggs & Wirtz (1971) 
in experiments that examined the marginal stability of the fluid. More recently 
Tsinober & Tanny (1986) (see also Tanny & Tsinober 1988) conducted a more 
detailed experimental investigation of the marginal stability of a similar experi- 
mental configuration. I n  Tsinober & Tanny’s analysis of their experimental results 
they used a comparison with the theoretical results of Thangam et ul. for a finite slot 
of width ( ~ ~ t ) f ,  the distance that the heat had penetrated due to diffusion since the 
onset of the experiment. Using theoretical results for a finite slot for comparison with 
experiments on effectively semi-infinite fluids had previously been done by Linden &. 
Weber (1977) in their study of the instabilities induced by a sloping boundary 
inserted into a fluid with vertical temperature and salinity gradients. The linear 
theory presented here agrees well with the experimental results of Chen et al. (1971) 
and of Tsinober & Tanny (1986). 

Also of some relevance to the problem under consideration in this paper are the 
experiments of Huppert & Turner (1980) and Huppert & Josberger (1980) in their 
investigations into the fluid motions caused by blocks of ice melting into salinity 
gradients, and the experiments of Huppert, Kerr & Hallworth (1984) in their 
investigations into convection-layer thickness due to sidewall heating for different 
values of the Prandtl number and the salt/heat diffusivity ratio. Unlike the 
experiments of Chen et al. (1971) and Tsinober & Tanny (1986) the observed 
instabilities were far from marginal stability, however they still found that the 
instabilities observed took the form of thin almost horizontal convection cells with 
the same basic vertical scaling as that proposed by Chen et al. (1971). 

The only stability analysis for instabilities due to localized horizontal gradients in 
a double-diffusive problem is for the piecewise linear temperature and salinity 
gradients of Niino (1986). This model assumed a steady background state and that 
the vertical salt and heat fluxes were dominated by the presence of salt fingers. This 
approach would not be applicable to the case under consideration here since the 
background salinity gradient is stabilizing, and hence would inhibit the formation of 
salt fingers. 

All the theory that has previously been mentioned, whether for a vertical or 
inclined slot or for piecewise linear gradients, benefits from the existence of a 
background state that  is uniform in some direction and is independent of time. These 
background states also have a degree of symmetry about the middle of the slot or, 
in the case of the Niino model, about the centre of the localized horizontal gradients. 
This symmetry is also reflected in the perturbations found in the analysis. However, 
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in the case where a salinity gradient is heated from a single sidewall the symmetry 
no longer exists and the background flows are, in general, time dependent. In  this 
paper we investigate the linear stability of this time-dependent background flow and 
compare the results with the published experimental results. In $ 2  we look a t  the 
large-time asymptotic background state for a fluid with a vertical salinity gradient 
that  is heated from a single sidewall. The stability of the background state is 
investigated in $3, where we show that for a strongly stratified fluid there is only one 
important non-dimensional number that governs the stability of the fluid. In $4 we 
compare the results of this linear theory with the available experimental results in 
the literature. Finally in $ 5  we look at  the effect of the boundary layer near the wall 
and how the quasi-static assumption made in $3  breaks down. 

This paper is only concerned with the linear analysis of the instabilities. The 
analysis of some of the nonlinear effects are dealt with in Kerr (1989). 

2. Background state 
In  this section we find how a semi-infinite stratified fluid, with a vertical wall, 

adjusts to a change in the temperature of the wall. Linden & Weber (1977), in their 
investigations of the effect of a sloping wall in a stratified fluid, found that a steady 
flow, that was uniform along the boundary, did not exist when the stratification of 
the fluid was caused by both temperature and salinity gradients unless the 
diffusivities of heat and salt are the same. In  a similar fashion we can look for a 
steady solution for the background flow that is uniform along the wall for the case 
of heating a semi-infinite body of fluid with a vertical salinity gradient from a 
vertical sidewall. The time-dependent governing equations for the vertical velocity, 
w, of a Boussinesq fluid whose motion is uniform along the wall and for the 
perturbations to the background temperature and salinity, T and S, for such a flow 
in a fluid with uniform vertical temperature and salinity gradients and RZ are 

with the density of the fluic , 

aw a 2 w  
= g(aT-/3S) + v-, 

at a x 2  

- 

aT - a2T -+ wT, = KT-, 
at ax2 

( 2 . l a )  

(2.1 b )  

(2.1 c )  

p, given by 

p = ~,,(l--T+/38). (2 .2 )  

Here v is the kinematic viscosity, g the acceleration due to gravity, K~ the diffusivity 
of heat, K~ the diffusivity of salt, a the coefficient of thermal expansion and /? is the 
density change due to a unit change in the salinity. 

If the wall temperature is increased by AT and the salinity by AS, it can be shown 
that for a steady background flow to exist the following condition must be satisfied : 

K ~ A T  K ~ A S  -- -- 
E % . 

This condition is not in general satisfied and so, in general, there is no steady 
solution. Instead we must look at  the time-dependent problem. We will confine 
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ourselves to the case where the vertical stratification is due only to a salinity 
gradient, so = 0. Initially the fluid is a t  rest and both the fluid and the wall are a t  
temperature T = 0. At time t = 0 the wall temperature is increased by the heating of 
the wall. This situation matches the experiments that have been performed. The salt 
boundary condition a t  the wall could be either that the salt takes a prescribed value 
at each point on the wall or that there is no salt flux at the wall. 

By the use of Laplace transforms it  is found that, for the case where the wall 
temperature is instantaneously increased to T = AT and the salinity a t  the wall 
remains unchanged, the leading-order large- time asymptotic behaviour is given by 

( 2 . 4 ~ )  

W %  ga AT(1-7)xexp (-L) +-(-) gaA1’ r exp ( - ~ x )  sin (Mx) 
w ( K T  7Ct3): 4 K T t  N g 

- 2ga ATx cos (Nt) 
p( (T -k 7 )  (27C( V + K s )  t 

a AT 
exp (-Mx) cos (Mx) S-P 

201 ATx sin (Nt) X2 

- p N ( g  + 7 )  (27C(V + K S )  t 3 ) ten€)( -2(v+KS)l);  (2*4c) 

whcrc the Prandtl number is g = v / K ~ ,  the salt/heat diffusivity ratio r = K s / K T ,  and 
the buoyancy frequency, N ,  is defined by 

( 2 . 5 ~ ,  b)  

These large-time solutions have three parts. The first parts in the expressions for 
the velocity and the salinity have the same lengthscale as the thermal diffusion. This 
represents the upwelling of the water so that  the negative buoyancy of the saltier 
water balances the positive buoyancy of the temperature. The first term in the salt 
equation has a mismatch in the boundary condition a t  x = 0. The upwelling water 
tries to impose a salt boundary condition of S = a AT/p a t  x = 0, as opposed to the 
actual condition assumed here of S = 0. The second term is the salt boundary layer 
that would be obtained by applying a salt difference A S  = -a AT/p a t  the wall to the 
background salinity gradient without any temperature effects (see, for example, Gill 
1966). Thus this term represents the matching of the salt boundary condition to the 
salinity profile on the thermal layer scale. The last terms in the expressions for the 
velocity and salinity are decaying oscillations a t  the buoyancy frequency that result 
from the initial impulsive disturbance. 

Different salt boundary conditions a t  x = 0 will change some of these results. If a 
condition that the salt perturbation S be equal to AS a t  x = 0 is imposed, then, since 
the problem is linear, this would result in a change in the amplitudes of the salt 
boundary layer and the buoyancy frequency terms. This is equivalent to adding the 
motions due solely to the imposition of the salt boundary condition whilst leaving the 
wall temperature a t  the ambient level. Of more interest for the purposes of 
comparison with experiments is the case of a no-flux condition on the salt (dS/ax = 0 
a t  x = 0) .  In this situation we would have a decaying salt boundary layer (dying 
off in amplitude as t d )  and an altered buoyancy frequency term. Neither of these 
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alterations to  the salt boundary condition has any effect on the parts associated with 
the thermal term. 

There are three lengthscales associated with the large-time asymptotics, the 
thermal lengthscale ( K ~  t);, the salt boundary-layer thickness M-' and the lengthscale 
associated with the buoyancy frequency terms. The lengthscale of the salt boundary 
layer is time independent, while that  of the thermal layer is growing with time. These 
two lengthscales will separate when 

M-' < ( K T t ) i .  (2.6) 

For typical experiments (cf. Chen, Briggs & Wirtz 1971) this would give the 
condition 

Since the time taken for the instabilities to appear is normally of the order of a few 
minutes when the system is marginally stable, this condition is normally satisfied. 

It is also possible to look a t  the response to different temperature boundary 
conditions a t  the wall. I n  the experiments of Chen et al. (1971) their wall 
temperatures did not increase instantaneously but increased to a final temperature 
over a timescale of some minutes. Their measurements of the wall temperatures as 
a function of time was well fitted by a time-dependent wall temperature of the form 

t % l s .  (2.7) 

AT( 1 -ePst) (t 2 O),  
(t  < 0). 

The temperature profile associated with this wall temperature can again be 
calculated by using a Laplace transform of the temperature equation. The resultant 
temperature profile is 

Tsinober & Tanny (1986) also heated the wall to  conform to this temperature 
evolution. In  addition they conducted some experiments with the wall temperature 
increasing linearly with time after the start of the experiment. In this case the 
temperature profile that results is given by 

(2.10) 

where c is the rate of change of wall temperature. 
As with the error function temperature profile these two profiles have matching 

horizontal salinity gradients induced to cancel out the horizontal density gradient to 
leading order. 

For all time-dependent wall temperatures that tend to a constant value AT for 
large time, the temperature profile in the fluid will always tend towards the error- 
function profile generated by the step change in the temperature. For this reason we 
will use the error function as the representative temperature and salinity profile for 
most of the following work. 

3. Linear stability analysis 
Having found how the stratified fluid responds to an increase in the wall 

temperature we now investigate the stability of this background state. To make any 
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progress we have to make some assumptions. The higher-order terms in the large- 
time asymptotic approximation to the background flow found in the previous section 
are smaller than the leading-order terms by a factor of order (Nt)-2 where t is the 
elapsed time since the onset of the heating, and N ,  the buoyancy frequency. In  the 
near marginal experiments of Chen et a,l. (1971) the instabilities are first observed 
several minutes after the heating of the wall started, while the buoyancy frequency 
of the fluid was around 1-3 s-l, and so a t  the onset of instability is very small. 
The background flow will then be well described by the leading-order large-time 
asymptotics. These large-time asymptotics are made up of three distinct parts, a 
thermal layer, a salt boundary layer and a buoyancy frequency term. The 
instabilities are driven by the region of the fluid with the horizontal temperature and 
salinity gradients. Since the lengthscale of the salt boundary layer is much less than 
that of the thermal layer we will assume that the salt boundary layer has negligible 
effect and can be ignored. We will also neglect the buoyancy frequency terms since 
they start off small in amplitude and decay away. They also have a frequency much 
higher than the growth rate of the instabilities and so one can expect that the 
interactions between them will be negligible. 

With these assumptions we have a background state described by 

(3.1 b) 

( 3 . 1 ~ )  

where f(x) = erfc ( i x ) .  (3.2) 

Hence the linearized equations for small perturbations to this background flow are 

where $ is the stream function for the perturbation velocity with 

( 3 . 3 4  

(3.3b) 

(3.3c) 

We non-dimensionalize these equations with respect to the following quantities 

T with respect to  A T ,  ( 3 . 5 4  

u A T  
S with respect to - 

P ’  
(3.5b) 

x with respect to I = ( K ~  t) ; ,  (3 .5c )  
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z with respect to h = ( 1  -7) h' = ( 1  - 7) a AT( -,L?8J1, 

t with respect to h2/KT, 
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(3.5d) 

(3.5e) 

$ with respect to K~ llh. (3 .5 . f )  

The horizontal and vertical lengthscales are non-dimensionalized with respect to 
different quantities. The vertical lengthscale is chosen to be ( 1  - 7 )  h'. This consists of 
two parts, the h' = aAt(  -/38J1 part is the height by which a fluid element would 
rise in a salinity gradient if its temperature was increased by AT, the lengthscale 
suggested by Chen et al. (1971) in their scaling arguments. The (1-7) term is 
introduced for some simplification at  a later stage. The horizontal lengthscale is the 
thickness of the thermal layer of the background state. 

The non-dimensional equations that result are 

The following non-dimensional parameters now appear 

and the operator 

( 3 . 6 ~ )  

(3.6b) 

( 3 . 6 ~ )  

(3.7) 

The non-dimensional background horizontal compositional gradient and vertical 

(3.9) 

The boundary conditions for the stream function imposed at the wall are that the 
wall is a stream line, and the no-slip condition, hence 

$ = - = O  all. w h e n x = 0 .  (3.10) 

As the wall temperature is prescribed there will be no temperature perturbation at 
the wall. We will also assume that there is no salt flux through the wall. Hence the 
other two boundary conditions imposed at the wall are 

ax 

(3.1 1 )  
as 
ax 

T = - = 0  whenx=O. 
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Far away from the wall all the disturbances will decay away, so the boundary 

(3.12) 

T + O ,  S+O asx-to0.j  

The -$Px(a/ax) terms in the governing equations are caused by the time 
dependency of the horizontal lengthscale 1. The id2 term in the stream function 
equation arises from the time dependent non-dimensionalization of $. 

Apart from the Prandtl number, u, and the salt/heat diffusivity ratio, 7, that are 
non-dimensional measures of the properties of the fluid, there are two other numbers 
that parameterize the system, S and Q .  The first of these, S, is the ratio of the vertical 
and horizontal lengthscales. The other parameter, Q ,  plays the role of a Rayleigh 
number. In  the normal Rayleigh-Be‘nard convection between two flat horizontal 
plates separated by a distance d and with an imposed temperature difference of AT 
the Rayleigh number is defined as 

(3.13) Ra = -. 

The meaning of this parameter can be appreciated from, for example, the 
mechanistic argument from Turner (1973, pp. 208-209). This argument considers a 
parcel of fluid with dimensions of order d and density perturbation of order po a AT 
and examines the magnitude of the distance that such a parcel of fluid would travel 
in the direction of gravity if it  is resisted by viscosity and loses its density difference 
by thermal diffusion. The Rayleigh number is the ratio of this distance to the vertical 
separation of the plates, and so convection would be expected to  occur if this ratio 
was larger than some. order-one number. For the heating of a salinity gradient from a 
sidewall this argument has to be modified. Firstly, although the appropriate density 
perturbation will still be po a AT this will be due to anomalies in the temperature and 
the salinity. The rate a t  which these anomalies will decrease will be limited by the 
smaller of the diffusivities of heat and salt. For salt in water K~ is two orders of 
magnitude less than K~ and so will be more important. The other modifications arise 
from the presence of two lengthscales, the lengthscale, 1, of the horizontal 
temperature and salinity gradients, and the height, h’, by which an element of fluid 
would rise if its temperature was increased by AT. Any convection cell that would 
appear would have height of order h’ and length of order 1. In the situation we are 
considering I + h’ and so h’ is the important lengthscale for the diffusive effects. The 
horizontal lengthscale comes into the problem in two ways. As the height of the 
convection cells are of order h and the length of order 1 the parcels of fluid will not 
be moving parallel to gravity as in Rayleigh-Bdnard convection but along 
streamlines with slope of order h / l .  This reduces the effective buoyancy force, and 
hence the distance the parcel of fluid would travel, by a factor of h’/l. Secondly, the 
distance that the fluid element must travel is of order 1 and not h’. This introduces 
another factor of h’/l into the argument. These changes to Turner’s argument give 

ga ATd3 

V K T  

ga ATh5 a resultant parameter 
Q‘ = 

V K S  l2 (3.14) 

which would determine the marginal stability of the flow. This is the same as the 
parameter that came out of the non-dimensionalization, apart from the extra factor 
of (1 - T ) ~  whose significance will be seen later on in this section. 

Although we are using the error-function temperature (and salinity) profile caused 
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by an instantaneous jump in the wall temperature, in reality the temperature of the 
wall can take several minutes to heat up and for the fluid to develop instabilities. For 
a strongly stratified fluid ( h  is small) this means that 6 will be very small when 
instabilities are first observed. However instabilities will grow exponentially in 
magnitude with growth rate of order 1 in the non-dimensional units, except for 
values of Q very close to a critical value. The thermal boundary layer has a growth 
rate proportional to a2 which is equal to l / t ,  the inverse of the non-dimensional time 
since the start of the wall heating. Hence, for realistic wall heating, S2 will be very 
small and it will change very slowly compared with the growth rate of the 
instabilities. This leads us to the next assumption that we will make, the quasi-static 
assumption. We assume that 6* can be taken to be a constant, which is equivalent 

fJ2 -g 1.  (3.15) 
to the statement that 

This quasi-static assumption and its validity will be looked a t  in more detail in $5.  
As we are concerned with the case where a2 is very small we could neglect all terms 

involving it in (3.6). This results in ignoring all the horizontal diffusion terms. Since 
the flow is driven by the horizontal temperature and salinity gradients in the bulk 
of the fluid we would expect neglecting these terms to have no effect to leading order. 
However this model of the flow would cease to be valid in a boundary layer near the 
wall. We will return to  this boundary layer and the effect of a non-zero 6 in $ 5 ,  but 
suffice it to say that neglecting all the 62 terms results in errors of order a2. Taking 
a2 = 0, equations (3.6) become 

( 3 . 1 6 ~ )  

(3.16b) 

( 3 . 1 6 ~ )  

As horizontal diffusion is not present in these equations we must drop both the 
boundary conditions that involve this, the no-slip condition for the stream function 
and the no-flux condition for the salt. 

As neither t nor z appear explicitly in these equations we look for solutions that are 
periodic in the vertical and have an exponential time dependence, i.e. solutions with 

@,T,Saexp(h t+imz) ,  (3.17) 

With this z and t dependence the equations become 

(3.18 a )  

AT - im$f '(2) = - m2T, (3.18b) 

hii'-irn$f'(x)-(l-~)-= a@ -7m2X. (3.18 c)  

We are interested in finding the conditions of marginal stability and so we look for 

h = iw, (3.19) 

ax 

solutions in which the growth rate has no real part, setting 
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where w is real. With this z and t dependence we can eliminate both S and T from 
(3.18) and derive an equation for $(x), 

im3($f’)’ m2(iw+7m2) (iw+um2) 
$ 9  

O=V+ - 
(iw+m2) TUQ 

with boundary conditions 

$(O) = 0, $(x) --f 0 as x --f co 

(3.20) 

(3.21) 

From (3.18b) we observe that the statements $ = 0 and T = 0 are equivalent, and 
so the temperature conditions a t  x = 0 and 00 are both satisfied when $ satisfies 
(3.21). Similarly, since a$/ax+O as x + co, ( 3 . 1 8 ~ )  implies that the salinity condition 
at  infinity is also satisfied. 

The inclusion of the (1 -7) factors in the definitions of Q and of the vertical 
lengthscale, h, means that this factor does not appear in (3.20) and a singularity is 
removed in the limit 7+ 1 .  The inclusion of this factor also has the effect that this 
equation is unchanged if u and r are interchanged. 

To find non-trivial solutions to (3.20) we have to solve the eigenvalue problem to 
find values of Q ,  w and m for which solutions exist. We first investigate whether or 
not i t  is possible to find marginal states with w = 0. To do this we set w = 0 in (3.20) 
and multiply this expression by the complex conjugate of $. Then, by integrating 
from x = 0 to co and taking the imaginary part of the resulting expression, we derive 
the necessary condition for an instability to have w = 0, that 

(3.22) 

For sidewall heating f”(x) is always positive for any monotonically increasing wall 
temperature and so this condition can never be satisfied. However an analogous 
condition will be satisfied for the case of the vertical slot where the temperature 
profile is linear. In  this case the results of Thorpe et al. (1969) and Hart (1971) are 
retrieved in terms of the parameters used here (see Appendix). 

For the case that we are interested in, withf(x) = erfc (ix), (3.20) cannot be solved 
directly, instead it was solved numerically using standard techniques over a finite 
interval with an appropriate radiation condition a t  the end of the interval away from 
the wall. The eigenvalues Q and w corresponding to  marginal stability for a range of 
values of m were found. These values of Q and w for marginal stability are shown in 
figure 1 for u = 7 and r = &, the approximate values for salt in water. The curve of 
Q plotted against m has a minimum. This gives the point of marginal stability of the 
system as a whole. For values of Q less than that of the minimum there are no 
unstable modes and the fluid is stable to infinitesimal disturbances. For values of Q 
greater than this minimum there is always an unstable mode and so the fluid is 
unstable to infinitesimal disturbances. The value of m corresponding to this 
minimum, and the corresponding Q and w are, to 4 significant figures, 

m = 6.244, Q = 147700, w = 0.6744. (3.23 a+) 

We have shown previously that, for marginal stability, w can never be zero. This 
is confirmed by these results and we see from figure 1 (b)  that  w is always positive. The 
disturbances are not stationary in space but move with a downwards phase velocity, 
wlm. 

The streamlines and the temperature and salinity perturbations corresponding to 
marginal stability are shown in figure 2. The streamlines in figure 2 ( a )  show how the 
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FIGURE 1.  (a) Graph of the values of Q for marginal stability against the vertical wavenumber m, 
showing the regions of stability and instability. (b) Graph of o against the vertical wavenumber m 
for the cases of marginal stability. 

linear stability theory predicts a series of counter-rotating convective cells that slope 
down away from the wall. This slope is due to the fluid moving away from the wall 
being warmer and saltier than the fluid a t  an equivalent level further from the wall. 
As it moves from the wall it moves into cooler fluid and loses its heat faster than it 
loses its salt. The fluid then becomes heavier than the surrounding fluid and tends to 
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FIGURE 2 (a,  b).  For caption see facing page. 

sink. Similarly the incoming fluid tends to rise. Away from the wall the streamlines 
tend towards parallel lines of constant slope. I n  this region there is no active 
convection. The streamlines indicate the presence of internal waves that are being 
generated by the moving periodic instabilities a t  the wall. Since the horizontal 
components of the group and phase velocities of internal waves point in the same 
direction, the phase velocity of these waves (perpendicular to their streamlines) 
points downwards and away from the wall. This confirms that the sign of w is positive 
for marginal stability. The temperature perturbations, figure 2 ( b ) ,  show the fluid 
moving away from the wall carrying heat into a cooler environment, while the fluid 
moving towards the wall is cooler. The salinity perturbations, figure 2 ( c ) ,  show the 
horizontal motions cause similar changes to  the salinity, but now the presence of a 
vertical salinity gradient leads to any vertical velocities also causing a change in the 
local salt concentration. This can be seen clearly near the wall where upward 
velocities are associated with increases in the salinity. Note that the perturbations 
in S are much larger than the perturbations in T, this is due to the large difference 
between their diffusivities. 



Heating a salinity gradient f rom a vertical sidewall: linear theory 335 

FIQURE 2. (a) Plots of the streamlines of the instability at the critical value of &. Here x is in the 
range 0 to 6 in the non-dimensional lengthscale, while two complete cycles are plotted in the 
vertical (roughly a range of 2 in the z-direction). The contours of the stream function are plotted 
from -0.6 to +0.6 in steps of 0.1, the negative contours are dashed. ( b )  Plots of the temperature 
perturbations, superimposed are the streamlines (the thin lines), for marginal stability. The 
isotherms are plotted a t  levels from -0.04 to +0.04 in steps of 0.01, the negative isotherms are 
dashed. (c) Plots of the salinity perturbations, superimposed are the streamlines (the thin lines), for 
marginal stability. The lines of constant salinity perturbation are at levels from - 1.2 to  + 1.2 in 
steps of 0.2, the negative contours are dashed. 

We can also look for the growth rate of linear disturbances. If we let h have a non- 
zero real part then we gain an extra degree of freedom in the eigenvalue problem. 
This degree of freedom is taken up by prescribing the value of Q. In the same manner 
as before we solve the eigenvalue problem to find the real and imaginary parts of h 
as functions of Q and m. The results are shown in figure 3. The curves of constant 
growth rate in figure 3 ( a )  have minima that shift to the right as the value of the 
growth rate increases. Each minimum corresponds to  the fastest growing mode for 
any given value of Q and so this shows that the wavenumber of the fastest growing 
mode increases as the value of Q increases. Comparing the contours of w in figure 3 ( 6 )  
with figure 3(a )  we see that as the heating rate Q increases the value of w 
corresponding to the fastest growing mode also increases. However, looking a t  the 
relative sizes of the growth rate Re(A> and w in figure 3 ( c )  we see that the ratio of 
Re{h} to w becomes larger for the fastest growing mode as the value of Q increases. 

Up to this point the calculations all use u = 7 and 7 = &, the approximate values 
for heat and salt in water. For different fluids and solutes the values of u and 7 can 
vary greatly from these values. By the convention that of the two components that 
effect the density the one that diffuses faster is called the heat and the slower 
component the salinity, in all cases 7 < 1. With this convention in mind the critical 
values of Q ,  and the corresponding values of m and w ,  were calculated for values of 
u between 0.01 and 100 and for values of 7 between 0.001 and 1. The results are 
shown in figure 4. These plots show a reflective symmetry about the line u = 7. This 
is due to (3.20) being invariant to interchanges of u and 7. The inclusion of the (1  -7) 
factors in the definition of Q and the vertical lengthscale (and hence in the timescale) 
has the result that the critical values of all three quantities do not have singularities 
as 7 approaches 1. The plots also show that for CT> 1, Q only varies by a small 
amount for large variations in u and 7, and that as u gets larger the dependency of 
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FIGURE 3. Contours of the values of (a )  Re{A}, (6 )  w = Irn(A) and ( c )  R e { A } / w  for values of Q 
between 0 and 16 x lo5 and for m between 3 and 14. The contours are plotted for (0) values o f  Re 
( A }  in the range of -2 to  4 with intervals of 0.5. (6) w taking the values 0.25,0.5,0.75. 1 .O, 1.5, 2.0, 
3.0, 4.0 and 5.0 and (c) values of Re{A}/o in the range -5 to  3 with intervals of 0.5. 

Q on (T becomes weaker. This (T independence is also seen in the results for w and m 
in figures 4 ( b )  and 4(c). For the most unstable modes, as (T becomes very large the 
convection rolls are still limited in height by the vertical lengthscale, and so m will 
remain of order 1.  Also, we would not expect w to become much larger as the viscosity 
increased. Thus we would expect that as (T becomes larger the factor (iw+ urn2) in 
(3.20) could be approximated by um2,.and so the Prandtl number will cancel out to 
leading order leaving the equation for $ independent of u. In this limit of large CT the 
equation for $ is 

im3($f ’)’ m4(iw+7m2) 
(iw + m2) TQ 

Ilr . 0 = @“+ - (3.24) 

If we look a t  the behaviour as r --f 0 we find that to leading order w is proportional 
to  7 ,  and so we define 4 by 

w = 7 w .  

Substituting this into (3.24) we find that, neglecting terms of order 7, 

m4(i4 + mz) 

Q Ilr. 0 = yY’ + im($f’)’ - 

(3.25) 

(3.26) 

This can be solved numerically to find the minimum value of Q,  and the corresponding 
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value of 6, as before. From this we obtain the result that for u B 1 and r 3 1 the 
values of Q, w and m a t  the critical point are 

Q = 152500, w = 56.887, m = 6.375. (3.27 a+) 

In  the results shown in figure 4 it can also be seen that in the region where both 
CT and r are small the values of Q and m do not change significantly along the line 
CT = r .  In the neighbourhood of this line the contours of Q and m are nearly parallel. 
However, w decreases along this line, behaving approximately as (m)f. In this limit 
(3.20) becomes, to leading order, 

3 
m2(io+rm2)(iw+ gm2) 

rfl& 
0 = +" + im( +f')' - 

If  we rescale w by a factor of (UT);, setting 

(3.28) 

(3.29) 
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FIGURE 4. (a) Contours of the critical values of Q for values of u between 0.01 and 100, and for 
values of 7 between 1 and 0.001. The contour levels range from 70000 to 150000 in steps of 10000. 
( b )  Contours of w corresponding to  the critical values of Q for values of B between 0.01 and 100, and 
for values of 7 between 1 and 0.001. The contour levels go from 0.5 to 8.5 in steps of 0.5. ( G )  Contours 
of m corresponding to the critical values of Q for values of u between 0.01 and 100, and for values 
of 7 between 1 and 0.001. The contour levels go from 4.2 to 6.4 in steps of 0.2. 

ff 

then (3.28) becomes 

(3.30) 

In  this equation v and 7 only appear in the term ((&/7f) + (d/&)). This is a function 
of the ratio of v and 7 .  Hence the solutions will only depend on the distance from the 
line v = 7 on the log-log plots, which is equal to 2-~~1oglO(cr/~)~, resulting in the 
contours being approximately parallel to the line cr = 7 .  

We can solve (3.30) numerically to find Q ,  w* and m as functions of Ilog,,(cr/~) I. The 
results are shown in figure 5 .  The graph of Q ,  figure 5(a) ,  shows that there is a dip 
in the critical value of Q when the value of Ilog,,(cr/~) 1 is less than about 2, reaching 
a low value where cr = 7.  Outside this region Q rises to a level similar to that found 
in the large u case. A similar dip is also found for the critical value of m in figure 5 ( c ) ,  
although not of the same magnitude. In  figure 5 ( b )  we see that w* has an almost flat 
region when cr and 7 are of similar magnitude, while away from this region the graph 
drops away. The decay rate in this region is proportional to (a/7)*;, the sign being 
chosen so that this quantity decays as Ilog,,(a/~)I increases. Again this fits in with 
the large cr region since in this region w is almost independent of c and so from the 
graph we get 4 m - i  behaving like 7;. This means that w will be proportional to 7 as 
7+0.  

4. Experimental comparison 
I n  this section we compare the experimental results of Chen et al. (1971) and 

Tsinober & Tanny (1986) relating to the heating of a salinity gradient from a sidewall 
with the linear theory of the previous section. In  the experiments of Chen et al. and 
most of those of Tsinober & Tanny the wall temperature is increased to a 
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predetermined final level over a timescale of several minutes, with the wall 
temperature behaving approximately as (2.8). I n  the experiments of Chen et al. s-l 
was about 3 min, while in those of Tsinober & Tanny they were able to vary its value 
in the range 75-8000 s. This evolution of the temperature is important since in the 
linear theory of the previous section we used an error function temperature profile 
caused by an instantaneous temperature rise of the wall. I n  this case Q is 
proportional to l / t ,  where t is the elapsed time since the onset of the wall heating. 
This results in an initially infinite value of Q which would imply that for sufficiently 
small time the fluid will always be unstable according to the previous linear theory. 
However, for small time the value of 62 will not be small and so the previous analysis 
is not valid. The instabilities associated with an instantaneous increase in the wall 
temperature in a vertical slot was investigated numerically by Chen (1974). If, 
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FIGURE 5. (a)  Graph of tp critical value of Q against Ilog,,(u/T)I for the limit of CT + 1 and T < 1. 
( b )  Graph of w* = w(cTT)-~, corresponding to the critical value of Q ,  against IlOg,,(U/T) I for the limit 
of u < 1 and T < 1. ( c )  Graph of m, corresponding to the critical value of Q, against llogl,,(u/T) I for 
the limit of u < 1 and 7 + 1. 

instead, we define Q in terms of the instantaneous wall temperature of the 
experiments of Chen et al. we have 

( 1  - T ) 6 g ( a  AT( 1 - exp ( - .~t)))~ 
(4 .1)  

VKS KT t (  - P S , ) 5  
Q =  

For small time Q is proportional to t5  and so the fluid starts in a stable regime. As 
t becomes large Q eventually decays like l / t  and so it becomes more stable. From this 
we see that Q will have a maximum value for some intermediate time. The fluid will 
not be a t  its most unstable a t  this maximum value of Q because the shape of the 
temperature profile, f(x), also varies with time, giving rise to an increase in the 
critical value of Q as st increases. Using the temperature profile for this wall 
temperature, (2.9), we can find the critical values for Q as a function of st, and so find 
the conditions that AT must satisfy for the fluid to be unstable a t  some time after 
the initiation of the wall heating. The results are shown in figure 6. This shows how 
the critical value of Q for each temperature profile that occurs as st increases. The 
dashed line shows how the time varying Q of (4.1) behaves for the case where it just 
touches the critical Q curve. The point of contact occurs when 

st = 2.851. (4-2) 

Q = 121 100, m = 6.965. (4.3a-b) 

At this time the corresponding values of Q and m are 

Here the vertical distance has been non-dimensionalized with respect to the final wall 
temperature. From this we can see that the fluid will be unstable a t  some time if Q 
exceeds the critical value (4 .3a)  where Q is evaluated when st = 2.851. 

We can calculate the instantaneous value of Q from the experimental data of Chen 
et al. for each of their experiments for the time when the fluid is most unstable, and 
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FIGURE 6. Graph of the values of the critical values of Q as the value of st increases (solid line) with 
the instantaneous values of Q for the wall heating used by Chen et al. (1971) (dashed line) for the 
case where the two curves just touch. 

compare the observed stability with the calculated value of the critical &. The results 
are shown in table 1. This table gives the calculated value of Q for each experiment. 
The column marked layer depth gives-the average thickness of the observed layers 
non-dimensionalized with respect to the vertical lengthscale h'. These layer depths 
are only given for test runs where the instabilities were observed on the whole 
sidewall. If this did not occur the run was deemed to be subcritical. The last column 
gives the Rayleigh number, 

ga ATV3 
Ra = 

V K T  
(4.4) 

that they calculated for each test. At first glance these results may not seem too 
encouraging since some tests were deemed subcritical when the linear theory predicts 
that they should be supercritical. However, Chen et al. observed that some of the 
tests that were subcritical had instabilities that formed a t  the top and bottom of the 
tank first. Further instabilities then appeared near the bottom of the wall, with 
the region of instability growing upwards. The first of these effects they ascribe to 
the reduced vertical salinity gradients a t  the top and bottom boundaries. If instead 
of applying the stability criterion globally we apply i t  locally then this would fit in 
with the predictions of the linear stability analysis since the local salinity gradient 
was reduced near the top and bottom boundaries in their experiments. The second of 
these effects they ascribe to an interaction between the lower layers that induces the 
motion a t  higher levels. If this was the cause then it, would be expected that a t  
marginal stability the group velocity (-awlam) of the disturbances would be 
comparable to the rate of propagation of this front. Examination of figure 3 ( b )  in the 
neighbourhood of the critical point shows that the group velocity is indeed positive 
and so the waves would propagate upwards, but the value of the group velocity is not 
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Test number 

1 
2 
3 
8 
6 
5 
9 

1 1  
14 
12 
13 
10 
15 

7 
4 

Q Layer depth 

3920 Subcritical 
4840 Subcritical 

55 800 Subcritical 
225000 Subcritical 
315000 0.907 
348000 Subcritical 
374000 Subcritical 
451 000 0.756 
564000 0.837 
609 000 0.847 
633 000 0.835 
923 000 0.689 

1810000 0.973 
1 920000 0.747 
2 110000 0.674 

TABLE 1 

Ra 

800 
900 

4 500 
11  300 
14200 
15 200 
15700 
18 100 
24 400 
25 500 
25 400 
26 800 
53 900 
44 OOO 
50 500 

very large (about 0.262) and so they would propagate upwards a t  a similar rate to 
the rate that heat would diffuse upwards. In the experiments the disturbances are 
observed to propagate faster than this. When we apply a local stability criterion we 
are able to take into account the nonlinearity of the equation of state for the fluid, 
since the linear approximation (2.2) is not a good approximation for the large 
variations of salinity that occur over the whole tank, although the linear 
approximation will still be appropriate on the lengthscale associated with the 
instabilities. Using the nonlinear equation of state from Ruddick & Shirtcliffe (1979) 
we can calculate how the local value of Q varies with depth in the experiments. Two 
examples of how Q varies with height are shown in figure 7 .  The first of these is for 
test number 3 of Chen et al. Even though the local value of Q at the midpoint of the 
tank is less than half the critical value there is a region near the bottom boundary 
that is locally unstable. This region occupies about a fifth of the height of the tank. 
Chen et al. show some photographs of this experiment in their figure 6 (these 
photographs have been published upside down). In the middle of the three 
photographs, taken after 10 minutes, convection cells are visible in the lower fifth of 
the tank, just after the linear theory predicts that the water should be a t  its most 
unstable. The second example, figure 7(b),  shows test number 6, the test with the 
lowest value of Q that was supercritical. Although the value of Q a t  the midpoint is 
about two and a half times the critical value, at the top of the tank the water is only 
just unstable. However there is not perfect agreement with all of the examples, tests 
5 and 9 also have supercritical values of Q at all heights, but both were found to be 
subcritical by Chen et al. All the other tests agreed with expectations, tests 1 and 2 
were subcritical at all points, test 8 was supercritical for all but a small section near 
the surface where it was subcritical, and the rest were supercritical a t  all heights. 

One feature that all of the experiments had in common was the large difference in 
the local values of Q between the surface and the bottom. In most cases the ratio 
between the top value and the bottom value was about 8. From this we would expect 
that, even if the convection cells had no interaction, the disturbances would appear 
a t  the bottom first, and then start ‘propagating’ upwards. This can be seen in their 
figure 8 which shows photographs of tests 9 and 12. This removes the need to consider 
some form of propagating front to the instabilities as suggested by Thorpe et al. 
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FIQURE 7 .  Plots of the variation with height of the local value of Q for two of the tests of Chen 
et al. (1971) ; (a )  shows test 3 and ( b )  shows test 6. The vertical line is the critical value of Q from 
the linear theory. 

In  the experiments of Tsinober & Tanny i t  was possible to control the time 
variation of the wall temperature. They used two different time dependencies for the 
wall temperature. For compatibility with Chen et al. they used (2.8) as a condition 
for the wall temperature for most of their experiments. I n  addition they also 
conducted some experiments in which the rise in the wall temperature was 
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proportional to time. They monitored the wall temperature and recorded its value at  
the point when the instabilities were first observed at  the centre of the heated wall. 
With this information they were able to make a plot of the points where the 
experiments went unstable on a Ra,  versus Ra, graph, where Ra,  and Ra, are 
defined by 

ga ATd3 , Ra,=-, gPS, d4 Ra, = ~ 

V K T  V K T  
(4.5) 

where d is the horizontal lengthscale ( K ,  t)i. These non-dimensional numbers were 
evaluated using the values of the parameters a t  the centre of the wall. By using a 
stability criterion based on the centre of the wall they eliminated the problems due 
to the nonlinearity of the equation of state. 

We can use the linear theory to predict a band in the (Ra,, Ra,)-plane in which 
these experiments should become unstable when the salinity gradient is sufficiently 
strong. The first limit to look at is the case where the wall temperature is 
proportional to time. For the non-dimensionalization we have taken the reference 
temperature to be the instantaneous value a t  the wall. With the corresponding 
temperature profile, (2.10), we can calculate the critical values of Q ,  m and w for this 
case : 

Q1 = 107000, m, = 7.193, w1 = 0.9225. (4.6 a+) 

Here we have used the instantaneous vertical lengthscale for the non-dimen- 
sionalization of m, and wl. Since we are using the instantaneous values of the wall 
temperature we find that for each experiment Q, is a function of the elapsed time. As 
the wall temperature is proportional to t the value of Q for each experiment increases 
as t5 .  From this we can see that eventually Q will reach the critical value in any 
experiment. This value of Q1 tells us the time when the instabilities will first appear. 
We can use the formula for Q,, Ra ,  and Ra, a t  this point of instability to give an 
expression for Ra, in terms of Ra, at'this critical point : 

Note that this expression is independent of the rate of change of wall temperature. 
The second limit that we need to find corresponds to experiments that only just 

become unstable. If we look at how any experiment progresses on the (Ra,, Ra,)- 
plane we see that for small values of st, Ra ,  i s  proportional to ,$ and Ra, is 
proportional to  t 2 ,  and so the trajectory of a point corresponding to the current state 
of the experiment moves upwards with a gradient of 514, greater than that of the line 
of marginal stability. For large values of st we find that the trajectory moves with 
a gradient of 314, less than that of the line of marginal stability. The point on this 
trajectory that corresponds to  marginal stability is the point found previously in the 
examination of the experiments of Chen et at. with Q given by (4.3a), and so we let 

Q2 = 121100. (4.8) 

As before, we can find a relationship between Ra, and Ra, corresponding to this 
critical point : 

Again, this is independent of the rate of wall heating. 
When the fluid is heated with a Chen et at. type wall temperature i t  can become 

unstable for any value of st up to 2.851. The critical values of Q for values of st up 
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FIGURE 8. Comparison of the linear theory to the  experimental results of Tsinober & Tanny (1986) 
for the heating of a salinity gradient from a single sidewall. The points at which the experiments 
became unstable, 0, for wall-temperature evolution of the form T,,,, = AT( 1 -exp ( - s t ) )  ; x , for 
wall temperature proportional t o  the elapsed time. The line indicates the position of the band (4.10) 
above which linear theory predicts tha t  the  fluid is unstable. The linear theory is only valid for the 
larger values of Ra,. 

to this value have already been found. In  the limit st + O  the temperature profile is 
the same as that due to the wall temperature being proportional to time, (2.10). If 
the experiment becomes marginally unstable then the value Q a t  this point will lie 
between Q, and Q2 and the corresponding Ra, will lie between the two respective 
extremes given above. Hence, a t  the point of instability, 

(4.10) 

If this narrow band a t  which the fluid would be expected to go unstable is 
superimposed on the Ra,-Ra, plot of the experimental results of Tsinober & Tanny 
for the heating of a salinity gradient, figure 8, we find that all bar one of the data 
points lie above this band. The instabilities can only be observed when the fluid has 
moved a finite distance, hence there will be a delay between the onset of instability 
and the observation and registration of the data points. For this reason the band 
should give a lower bound for the data points and not a line through their middle. 
This band does indeed give a good lower bound for the data points. For data points 
below a value of Ra, of about 10000 the agreement is less good. The lower the values 
of Ra, correspond to larger values of 8, and so the linear model with its quasi-static 
assumption breaks down. Tsinober & Tanny also reported that it was harder to judge 
the exact point of instability for these lower values of Ra,, giving an error estimate 
of up to 30% for the values of Ra, in this region. 

When the theory was applied to the experiments of Chen et al. and Tsinober & 
Tanny it predicted the onset of instabilities well. The major discrepancy between the 
linear theory and the observations was the form of the convection cells. The linear 
theory, by its nature, predicts counter-rotating convection cells. In  all the 
experiments the observed cells all rotated in the same sense. For convection cells to 
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be observed they must be of finite amplitude, and so nonlinear effects will be 
important once they have developed. These nonlinear effects are beyond the scope of 
this linear theory, and some of their aspects are examined in Kerr (1989). 

5. Boundary-layer calculations 
In  Q 3 we derived the equations of motion for the instabilities caused by the heating 

of a salinity gradient from a sidewall, and looked a t  the limit where the horizontal 
diffusion is neglected. This limit corresponds to taking 6 = 0 in (3.6). However, in this 
limit it is not possible to satisfy all the boundary conditions, in particular we have 
to drop the no-slip condition and the salt boundary condition a t  the wall. I n  reality 
6 is never zero and in this section we investigate the effect on marginal stability of 
the flow of retaining a small, but non-zero, 6. In  this case the horizontal diffusion has 
very little effect, except in a boundary layer near the wall where it will be significant. 
This is equivalent to the extension of the original stability analysis of Thorpe et al. 
(1969) by Hart (1971) for the case of a vertical slot. 

We are concerned with solutions that are periodic with respect to both 2 and t as 
before, with vertical wavenumber m and frequency w. To find the horizontal 
lengthscales that correspond to  the boundary layers we rescale the horizontal 
coordinate in the complete linear non-dimensional equations of motion, (3.6), setting 
x = Px’. There are three values of a which give different non-trivial balances between 
the leading-order terms in the equations, with a = 0, a = 1 and a = %. We will refer 
to the three regions that correspond to these scalings as the outer, middle and inner 
layers respectively. I n  each of these separate regions we find the asymptotic 
behaviour of +, T and S in the limit of small 6 and then join the solutions together 
using the method of matched asymptotic expansions. The wall boundary conditions 
that are applied in the inner layer are 

The boundary conditions imposed far from the wall are that all the perturbations 
decay as x+ 00. 

Inner layer ( x  = $x”) : 
The leading-order solutions in the inner and middle regions are 

T& 

(1 -4 
+- B, (1 - cos (Mx”) e-Mz“ - sin (Nx”) e-Mx”) ( 5 . 2 ~ )  

T = Bix”, (5.2 b)  

(iw + rm2) 
27-M2 

Ai( 1 - cos (Mx”) e-Mx” - sin (Mx”) e-Mz”) S = A , + S  

where 

12 

M4 = aQ. (5.3) 
F L M  207 
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Middle layer (x = ax’): 
(iw + 7m2) 

(1-7) 
$ = A,+S C m  2 ’ 9  (5.4a) 

imf ’(0) im&(iw + 7772,) 
T = B, exp ( - (iw + m2)gx’) + 

(iw + m2) A m +  (I - 7 )  (iw+m2) C,f’(O)X’, (5 .4b )  

imf ’(0) im&(iw + 7m2) 

(iw + m2) (1  -7) ( iw+m2) 
s = B,  exp ( - (iw + m2)tx’) + A,+C,+ C J ( 0 )  5’. 

(5.44 

Matching the inner and middle regions to the outer region, with the extra condition 
imposed in $3  that in the outer layer the x-derivative of $ tends to 1 as x +  0, gives 
the values of the undetermined constants to be 

(l-‘) B, = 613 imf‘(0) 
(iw+7m2)’ (io+m2)’ 

Ai = C, = 

im21717f‘(0) 
(1 - 7 )  (iw + m2), ‘ 

B, = 62 
i d 7 f ’ (  0) 

(1 - 7 )  (iw+ m2) ’ A ,  = u2 (5 .5)  

The outer layer involves no rescaling and represents the bulk of the fluid. For this 
layer the governing equations are (3.6). Since the only powers of 6 that appear in 
these equations and the boundary conditions found by matching with the middle 
layer are multiples of two we can expand $, T, S, Q and w as asymptotic power series 
in 6,: 

{$(XI> T ( X ) >  S(41 = {$O(X)> Tg(x), SO(41 +62{$,(x)> TZ(X)> S,(X))+. . * , 
{Q ,  w> = {Q,, w,> + S2{Q,, w2> + . . . . (5.6) 

Substituting these expansions into (3.6) we recover a t  leading order the equation 
(3.18) with the boundary conditions that $(O) + O  and v(0) + 1 as x+O, and that 
$(x) + O  as x +  00. The leading-order outer solution is just the solution found 
previously. 

We can extend this analysis in the outer region to calculate the order 6, 
perturbations. The equations for $,, T, and S, are 

$,-im3~(z)$,, ( 5 . 7 ~ )  

(iwo+m2)%-imf’(x)$, = -iw,Tg-imm(x)T,+ 

(5 .7c )  

(iw, +7m2) S,  - imf’(x) $, - (1 - 7 )  2 a$ = - iw, So - imm(x) So + 
ax 

The boundary conditions €or $2 and T, as x + 0 are 

These two boundary conditions are equivalent. As before we require that the solution 
decays as x+ 00. 
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Equations (5.7) do not, in general, have a solution. To find out when a solution 
does existnwe apply a solvability condition. This condition is obtained by finding the 
adjoints $, 9 and # to $,, T, and So. These satisfy the equations 

(5.9a) 

(5.9b) 

(5.9c) 

These can be rearranged to give a single equation for & which is the adjoint of (3.20), 
and can be solved in a similar fashion. If eachAof the (5.7) is multiplied by the 
corresponding complex conjugate of the adjoints $, 9 and 9, and the sum of the three 
resultant expressions is then integrated from 0 to co, the solvability condition is 
obtained: 

(5.10) 

Since Q2 and w2 are both real, taking real and imaginary parts of this equation gives 
two simultaneous equations for Q, and w2. From these the values of Q2 and w2 are 
evaluated a t  the marginally stable state found previously to give, for the case of 
u = 7 and 7 = &, 

Q2 = 240800, w2 = 0.3262. (5.1 1 a-b) 

The value of m that corresponds to marginal stability will also be a function of S2. 
This dependency can be found by expanding aQ/am as a double power series in a2 and 
the perturbations of m from the critical value found for S = 0. The values of the 
relevant terms in the expansion can be found to give the value of m for marginal 
stability to be 

The order S2 change to the critical value of m only affects the corresponding value of 
Q to order s4 and so the order S2 perturbation to Q given in (5.1 1 a)  is the leading- 
order change. This is not the case for the variation of w .  Since awlam $; 0 a t  the 
critical point, an order S2 change in m will cause an order S2 change in w .  The value 
of o for marginal stability to order S2 is found to be 

m = 6.244+0.897S2+0(S4). (5.12) 

w = 0.6744+0.0911S2+0(s4). (5.13) 

At this point we must look a t  these results in the light of the quasi-static 
assumption made in $3. The justification €or that assumption is that the growth rates 
of the instabilities are much greater than the growth rate of the thermal layer a t  the 

12.2 
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wall. The growth rate of this thermal layer is of order S2, while near the critical point 
the growth rate h of the instabilities has the relationship 

Re (4 = O(Q - Qcrit). (5.14) 

Hence the quasi-static assumption as stated in $ 3  breaks down when 

Q-Qcrit = 0(a22)* (5.15) 

Although the analysis if strictly speaking invalid for marginal stability, the location 
of the boundary between stability and instability is found with an error of order a2. 
We find from the boundary-layer calculations that the first influence of horizontal 
diffusion and the boundary layer has an effect on the critical value of Q of order d2, 
and so these estimates for the variations in the parameters for the critical point for 
small 6 lie within the error limits inherent in the quasi-static assumption. However, 
they may give an indication as to  the possible effects of non-zero 6 on the onset of 
instabilities. The positive value of Q2 could be interpreted as indicating that the 
probable effect of the extra horizontal diffusion is to stabilize the fluid, while the 
positive coefficient of 6' in (5.13) would indicate that the frequency of the critical 
disturbance would increase. However the vertical phase velocity of the disturbances, 
-w/m, is only weakly affected by the non-zero 6, being given by 

-o/m = -0.1080+0.00092S2+0(64). (5.16) 

Thus we may deduce that any effect of a non-zero 6 would have little effect on the 
phase velocity. 

It must be emphasized that the results in this section that relate to the effect of 
a non-zero 6 on the parameters Q ,  m and w for the critical instabilities do violate the 
quasi-static assumption, and hence should only be taken as an indication of what the 
real effects may be. It is beyond the scope of this analysis to take into account 
properly the effect of the time-dependency of the thermal layer. However, the form 
of the solutions calculated for the boundary layers of thickness $ and 6 do not require 
the breaking of the quasi-static assumption and will give the leading-order form of 
the perturbations in these regions when the conditions for the linear analysis are 
satisfied. 

6. Conclusion 
In  this paper we have looked at  the effect of heating a body of fluid with a vertical 

salinity gradient from a vertical sidewall. We investigated the linear stability of the 
resultant temperature and salinity distributions. We found that the relevant non- 
dimensional number for this configuration is 

in the case where the ratio between the horizontal lengthscale and the vertical 
lengthscale is small. It was found that for the case of water the onset of instability 
occurred when this number was about 148000 for the error-function temperature 
profile. For all possible values of the diffusivities of heat and salt and values of the 
viscosity, this parameter varies between about 70000 and 170000 for the onset of 
instability. This linear theory requires a quaui-static assumption which is equivalent 
to assuming the vertical lengthscale is much smaller than the horizontal lengthscale. 
This condition will be satisfied when either the salinity gradient is strong or the 
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heating rate is slow. This theory predicts the onset of instability in experiments that 
satisfy these conditions well, and also explains the apparent propagation of 
instabilities along the heated wall observed by Chen et al. (1971). However it does not 
predict the observed form of the instabilities, which in experiments consist of a series 
of cells that all rotate in the same direction. The linear theory, by its nature, predicts 
a series of counter-rotating cells and so a nonlinear treatment of the subject is 
required to address this phenomenon. Some of the nonlinear aspects of the sidewall 
heating of a salinity gradient are dealt with in Kerr (1989). 
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thank Dr J. Y. Holyer for many helpful discussions. 

Appendix 
In  the case of an infinite vertical slot with a vertical salt gradient and a linear 

lateral temperature gradient, as looked a t  by Thorpe et al. (1969) and Hart (1971), 
the analogous condition to (3.22) is satisfied trivially since f"(x) = 0. Since this 
problem is in a finite slot of non-dimensional width 1 we can replace the boundary 
condition a t  infinity with the condition that $ vanishes a t  x = 1.  The equation to 
solve for this problem would then be 

ms 

Q 
$ ( O )  = $(l) = 0. 

0 = $"-imf--$, 

with 

This has a solution , $ = AeiUX+Beibx 

where a = A ( m + ( m z - y r ) ,  2 

and 

The boundary condition a t  z = 0 gives A = -B, while that a t  x = 1 gives 

a = b+2nn, 

4m6 
and so Q = m2 - 4n2R2 * 
This has a minimum when n = 1 and so the point of marginal stability is given by 

m = .\/67c, Q = 4 3 2 7 ~ ~ .  (A 6) 

When these results are expressed in terms of parameters used by Thorpe et al. 
(1969), and by Hart (1971) we retrieve the results given for a strong salinity 
stratification. 
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